GRACE CLARK IAROCCHI
Not Applicable
SIMON FRASER UNIVERSITY
W.A.C. BENNETT LIBRARY

PHONE: PRINTED: 2008-09-05 13:45:06
FAX: REQUEST NO.: PAT-10064277
E-MAIL: SENT VIA: World Wide Web
 PATRON TYPE: Staff

<table>
<thead>
<tr>
<th>PAT</th>
<th>Regular</th>
<th>Copy</th>
<th>Journal</th>
</tr>
</thead>
</table>

TITLE: CAHIERS DE PSYCHOLOGIE COGNITIVE/CURRENT PSYCHOLOGY OF COGNITION
VOLUME/ISSUE/PAGES: 23 (1) 84-93
DATE: 2005-02-01
AUTHOR OF ARTICLE: Burack Jacob A.; Russo Natalie; Matejka-Grivas Anna; Bonnel Anna; larocchi Grace
TITLE OF ARTICLE: SCIENCE IN MOTION: THE QUEST FOR COHERENCE IN EMERGING RESEARCH ON AUTISM.
ISSN: 0249-9185
OTHER NUMBERS/LETTERS: LCCN: nancy
SOURCE: ebscohost:PsycINFO
NOTES: PATRON TYPE: Staff SYSTEM NO: 2006-04837-009

DELIVERY: E-mail Post to Web: slc3@sfu.ca
REPLY: E-mail: slc3@sfu.ca

If you have questions concerning InterLibrary Loans please call (778) 782-3625. Please quote your request number when making inquiries.

All photocopy requests are subject to federal regulations detailed in the Canadian Copyright Act and its amendments.
ILL/DD, Simon Fraser University, Burnaby BC, V5A 1S6
CETTE REPRODUCTION D'UNE ŒUVRE PROTÉGÉE PAR LA LOI CANADIENNE SUR LE DROIT D'AUTEUR NE PEUT ÊTRE UTILISÉE QU'À DES FINS D'ÉTUDE PRIVÉE OU DE RECHERCHE (L.R.C. 1985, c. C-42, ART. 30-2 OU 30.21).

TOUT USAGE À D'AUTRES FINS EXIGE L'AUTORISATION DU TITULAIRE DES DROITS.

DES RECOUPS CIVILS ET CRIMINELS SONT PRÉVUS EN CAS DE VIOLATION DU DROIT D'AUTEUR.

Cette copie numérique ne peut être utilisée que pour la production d'une copie papier pour l'individu qui a demandé la copie. Cette copie numérique doit être détruite le plus tôt possible après la production de la copie papier.

ANY OTHER USE REQUIRES THE AUTHORIZATION OF THE COPYRIGHT OWNER.

CIVIL AND CRIMINAL RECOUPSES ARE PROVIDED FOR INFRINGEMENT OF COPYRIGHT.

This digital copy may only be used to make a paper copy for the individual who requested the copy and this digital copy should be destroyed soon after the making of the paper copy.
censured phen-
manifested, especially
are about intuitively
journals of general in-
tific and lay commu-
attained as it is al-
minia of the small-
thetical accounts.

Milne, Swetten-
ies of motion percep-
the difficulties and c-
of populations with
Asperger syndrome.
articles on the topic of-
motion perception in
symptomatology thro-
cellular pathways. Th-
are all provocative, d-
and much respected j-
lems inherent in prov-
et al's concerns ab-
underpinnings in dev-
nascent area of re-
possible alternative a-
among persons with a-
work in relevant are-
tiques should be cons-
the initial studies of

despair in autism res-
thoughts on the intrin-

Conceptual concerns

In attempting to i-
(2005) highlight a se-
that relate to the oper-
study of persons with
and attempt to exten-
Conceptual concerns

Thoughts on the inherent messiness of essential story construction.

Some deep inessential matters, but rather simply a resolution of some
internal issues of motion perception or an imagining of messages of
the initial forces of motion perception or being imagining some
features of the story line of its stylistic context of emotional
and much respected journals, yet this is all that can be
deemed as a significant, informative and publishable in the future
undermined in developing a coherent understanding of this or any
of the emotions, I understand that A. motion perception may
play an important role in understanding autism
motion perception may play an important role in understanding autism
perception has been suggested as playing a role in autism.
This paper includes a review and analysis of the new
aspertuer syndrome, which includes a review and analysis of the new
symptoms of motion perception with developmental disabilities. Such as autism or

Heuristic concerns

The nature of the multiple issues of which it is made of music and of music
and still not inherent connected by the methodological
attributes as it is rather inherently connected by the methodological
and the other, however, the greatest for a good story, is rarely
issues of essential matters, where they are most visible to the eye,
their meaning. Of special interest is the question of how people
are shown in this paper and are expressed by prominent scholars of
music, especially the groups that are expressed by prominent scholars of
music.
examples of empirical and theoretical challenges to developing a nascent area of research in autism.

Conceptualizations of motion and the potential implications

Motion perception is not a unitary phenomenon, and is conceptualized with respect to coherence or thresholds of perception, complexity (such as first vs. second order), and differences between the perception of social/biological and non-social motion (Milne et al., 2005). Each of these different frameworks of motion perception are associated with specific theories, paradigms, and, most important, implications for understanding autism. For example, impairments in motion coherence and perceptual salience, as cited by Milne, Swettenham, Hansen, Campbell, Jeffries, and Plaisted (2002) and Bertone, Mottron, Jelenic, and Faubert (2003) may be related to prevailing ideas about the relation between characteristics of autism and impairments in basic bottom-up aspects of dynamical perceptual processing (Mottron & Burack, 2001). Alternatively, Moore, Hobson, and Lee's (1997) use of a paradigm that involved conscious control and categorization abilities reflect a distinction between object and biological motion that is consistent with more top-down approaches to social cognition (e.g., Klin, 2000). Although the discussions about atypicalities in top-down versus bottom-up processing and the emerging notions of motion perception may be mutually informative, the differences across conceptualizations and frameworks pose a challenge to attempts to synthesize the literature into a single story.

The nature of the tasks and the dependent variables of interest. The disparities in task demands, despite the use of similar stimuli, between the Moore et al. (1997) and Blake, Turner, Smoski, Pozdol, and Stone (2003) studies highlight methodological difficulties in providing a cohesive literature. Moore et al. asked typically developing participants and persons with Autism Spectrum Disorders (ASD) to state whether each animation presented in brief video sequences of point-light displays portrayed an object or a person and to describe “what you think the person is doing”. The dependent variable was the amount of stimulus exposure needed by participants to correctly identify the nature (human or object) of the stimulus represented in the light display. In contrast, Blake et al. (2003) used a 2-alternative forced-choice task, designed to be amenable to signal detection analysis, that asked whether a point-light display was a person whereas the other possibilities were random response bias, as it was ambiguous what a stimulus was a person or not. Although, evidence indicates motion processes is often not the potential useful divergent evidence for the phenomenon but fine-tuned variability in the task design is of course combination of many different factors.

Task difficulty and the ability of different groups of individuals, the ability to process information dependent on the kind of analysis. Milne et al. (2002) and O'Brien, Riggs, Brozovic, and Plaisted (2003) contend that when using random dot kinematogram tasks, participants with ASD may not be able to detect motion in all dot displays as sensitively as typically developing participants. Alternatively, Milne et al. (2002) and Plaisted (2002) suggest that one possible reason for the differences is that the tasks may be difficult and complex for children and adults with autism to perform.
difficult and complex to be considered both in itself and in its relation to other tasks, and the differences are well known to human beings. This is true even if the differences are not always that apparent, especially when the information is complex and the tasks are not clearly defined. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

A. Brown et al. (2000) found that when a task involves a complex structure, the visual information is not always that apparent, especially when the information is complex and the tasks are not clearly defined. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

B. G. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

C. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

D. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

E. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

F. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

G. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

H. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

I. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

J. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

K. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

L. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

M. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

N. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

O. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

P. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.

Q. Brodie, D. Wilkins, and M. G. Wilkins (2000) may be either more complex or easier to understand. However, differences in visual information can be very significant when they are not discussed. The importance of resolving these differences is a matter of concern, especially when the information is complex and the tasks are not clearly defined.
Diagnosis of Autism Spectrum Disorder

J. A. Burack et al.

88

performance on different tasks in a single study and in comparisons of findings across different studies.

Diagnostic issues and symptom severity. The implications of diagnostic issues and symptom severity are highlighted by Milne et al.'s conclusion that the initial findings in motion perception are neither consistent across the continuum of ASD nor within any single category of ASD. Cross study comparisons are complicated by the use of different groups from across the continuum of ASD. For example, Avikainen, Kulomaki, and Hari (1999) and Gepner and Mestre (2002) only included children with autism of average IQ or Asperger syndrome, whereas the other researchers included children with autism regardless of level of functioning. The potential impact of group differences is exemplified in Gepner and Mestre's (2002) findings that three children with autism with developmental delay showed decreased postural reactivity while three children with Asperger syndrome showed increased postural reactivity to visual motion. These group differences are certainly preliminary and need to be interpreted cautiously due to the small number of participants and the differences in MA between the two groups, but highlight essential issues of homogeneity-heterogeneity of the population of persons with ASD, optimal grouping in relation to diagnostic category or IQ level, and the appropriateness of generalizing from one subgroup to another.

In addressing the potential differences in motion perception in relation to differences in diagnosis, symptomatology, and severity, Milne et al. (2005) raise the issue of group composition and the relation between motion perception and clinical features of ASD. The ADOS and ADI-R are generally considered the gold standards of diagnosis and the time appears ripe for the inclusion of symptom makeup as a methodological consideration, at least at the descriptive level. The simple noting that autism was diagnosed according to the ADI-R criteria may not be particularly informative about the specific criteria that were met. For example, some children may meet all of the diagnostic criteria under each of the categories specified for autism and others may only meet criteria under certain categories. Although, both children are on the spectrum, they may present very differently with regard to symptomatology. Correlations with ADOS scores may provide some exploratory leads for understanding the ways that task performance is related to clinical features of autism, but the complexity and variability in symptom patterns severely restricts the likelihood of a universal notion of autistic performance. These considerations allow for questions universal to autism that specific symptom or cluster.

Inevitably, the participants for any number of studies are selected with regard to relevance of a specific factor such as the availability of different groups or information based on precise reporting of their use, allow for the conclusions among and: Developmental level plays a considerable role in participants' development and the consistency in their responses across studies is helpful but also limited. As with all studies can be, at least some participants' development may be circumscribed under certain conditions, and not necessarily imply later developmental trajectories. Findings of intact or reduced perception of others is often helpful in understanding the development of perspective taking. (2004). One argument as central to autism is the role of early developmental milestones. Weaknesses in cognitive and social functioning early in development may be apparent. Although, these levels is useful to understanding the development of perspective taking as the development of perspective taking is often helpful in understanding the development of perspective taking. (2004). One argument as central to autism is the role of early developmental milestones. Weaknesses in cognitive and social functioning early in development may be apparent. Although, these levels is useful to understanding the development of perspective taking as the development of perspective taking is often helpful in understanding the development of perspective taking.
Understanding the development of autism and related behaviors requires a comprehensive approach. The development of children with autism and other developmental disabilities, such as ADHD, is not only complex but also varies widely among individuals. To better understand and address the needs of these individuals, it is essential to incorporate a multi-disciplinary approach that includes education, therapy, and support systems. This integration of various aspects of the child's development can significantly improve outcomes and quality of life. Therefore, it is crucial to conduct research that provides insights into the causes, symptoms, and treatment options for autism and related conditions.
strategies used for matching groups (e.g., Burack et al., 2004; Mervis & Robinson, 1999; Mervis & Klein-Tasman, 2004; Mottron, 2004). The choices of the group or groups to which the target group is matched, the variables on which the groups are matched, and the tests with which the variables are measured can all significantly affect the extent to which differences or similarities are found between groups (Burack, Iarocci, Bowler, & Mottron, 2002; Russo, Flanagan, Berringer, Iarocci, Zelazo, & Burack, 2005). This necessitates the need for researchers to clearly identify the matching strategies and address the extent to which they are concordant with those of other studies (as well as how they might affect between-study difference). In some cases, similar findings, despite the use of different matching strategies, may reflect evidence of a relatively robust phenomenon, as it suggests the presence of differences regardless of matching measures. For example, Milne et al. (2002) and Spencer et al. (2000) found similarly impaired thresholds of motion coherence among persons with autism as compared to typically developing children, although the former group matched on both chronological age and non-verbal ability (as measured by the Raven’s) and the latter on verbal mental age. However, the use of different groups or measures can also preclude a systematic knowledge base regarding strengths or weaknesses as the points of reference vary across studies.

Historical contributions to theory

One way to describe the importance of motion perception, or any emerging area of research, is to place it within the context of the scientific literature. This type of historical perspective can certainly inform both the foundational theories, and the methodologies used to test them. Whereas the complexity of emerging research generally precludes a precise delineation of the historical origins of an idea, the researchers’ choice of historical starting point clearly shapes their conceptualization and testing of the relevant hypotheses. For example, Milne et al.’s (2005) attribution of the origins of research on motion perception in autism to Gepner, Mestre, Masson, and de Schonen’s (1995) finding of differences between persons with ASD and those with typical development on postural reactivity to visual motion influences their analysis of the empirical findings and theoretical framework. However, even earlier works might be particularly informative to developing theories of motion perception in autism.

In one early and influential study, developing participants were rotated in a chair and involuntary eye movements were assessed, suggesting that this may be typical in typical development; however, impairment in persons with autism typically developing. Their paradigms, participants who were open or closed, movement patterns were noted. Individual movement patterns were suggestive of any impairments in the participants.

The link between the historical perspective and the current state of the literature. The attempt to provide a comprehensive account of persons with autism and motion perception, the frame of reference for information as a concept (Viviani, 2002). The central question is how spatial organization, visual inputs and 'motion sense' (Viviani, 2002) a motor act changes endogenous motions are exogenous motions in exogenous

Conclusion

In summary, Milne et al. (2005) suggested that the early research on
In one early and relevant paper, Ommat (1970) found atypicalities in involuntary eye movements to their own "physical" and "endogenous motion," suggesting that adjusting the participant's body orientation affected eye movements. These findings were noted for participants with autism, suggesting that adjusting the participant's body orientation might be typical in autism. This is supported by Molloy and Dewart, who found increased postural reactivity among participants with autism, which was compared to typical participants with autism.

Shattuck's (2003) findings of increased postural reactivity among participants with autism, but not participants with Asperger syndrome, may be related to Involuntary Eye Movements. Typically developing participants stood on either flat or raised platforms with eyes open or closed, and body movements reflecting adjustment to motion were noted. Participants with autism were swayed and demonstrated greater movement patterns than typically developing participants. These findings are suggestive of atypicalities in endogenous motion and may be related to the link between exogenous and endogenous motion perception, the former being a result of visual input and the latter involving experiential or ecological factors, such as those experienced in early development.

The attempt to understand the perception of motion among typical and atypical participants can be found as far back as the early 1700s with Berkeley and 1800s with Lotze and Helmholtz. In early theories of motion perception, the way in which the human body moves is the "default" frame of reference for representing dynamic events, and changes in body movements are perceived as deviations from this default motion. However, findings of impaired endogenous motion perception may clarify our understanding of impairments in exogenous motion perception.

In summary, multiple studies provide a thoughtful review of the early research on motion perception among persons with autism. Their findings suggest that exogenous and endogenous motion perception are intimately linked. Accordingly, findings of impaired endogenous motion perception may clarify our understanding of impairments in exogenous motion perception.
discussions of the difficulties in synthesizing the few studies that have been published on this potentially essential area of research are informative both about the phenomena itself and about the challenges to developing a bigger story of autism. Differences in the conceptualization and operationalization of the construct, task demands and complexity, developmental levels and symptomatology of the participants, and matching strategies can all lead to unique insights about the phenomena but also to quite different understandings of it. Similarly, the retelling of the story through a different historical lens can affect both the ways that studies are developed and that findings are interpreted. In the case of motion perception in autism, the historical lessons regarding the essential links between exogenous and endogenous processes are useful guides for an integrated study of the phenomenon. As in all areas of research on autism and other specific populations of persons, the challenge is to find meaning across the mosaic of different studies and findings in order to better understand the population and the observed phenomenon.

REFERENCES

A few studies that have have demonstrated the difficulties in accurately quantifying and categorizing the characteristics of autism spectrum disorder (ASD). These challenges arise from the complex nature of ASD, which involves a range of cognitive, social, and emotional impairments. The variability within the ASD population makes it difficult to develop universal diagnostic criteria. The use of standardized assessment tools is crucial for accurate diagnosis and effective intervention. However, the reliance on these tools alone may not capture the full spectrum of ASD symptoms. A comprehensive approach that integrates multiple assessment methods is necessary to provide a more holistic understanding of each individual's unique profile. This approach can help in tailoring interventions to meet the specific needs of individuals with ASD, thereby improving their outcomes.